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MAKING ORDER IN CHAOS
            Tomaz Prosen, FMF, UL



What is (classical) chaos?
Are there universal physical concepts


and principles which allow to precisely define 

(and understand!) chaos?

Disclaimer: Deterministic Chaos is not “Chaos” !



POPULAR NOTION OF CHAOS: THE BUTTERFLY EFFECT

Sensitive dependece on initial conditions

so-called 

Lorenz attractor



Analitically tractable models of CHAOS



Example 1
BAKER MAP
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 coordinate is multiplied by 2 in each step (with the integer part forgotten).x
The system amplifies one bit per time step of “error” in initial condition.

Entropy (or information) is produced per unit time!



Example 2

Arnold Cat Map



Forgetting the intitial 
state: Dynamical mixing



Example 3 Order vs Chaos 
in Billiards

Quantum chaos in billiards

Arnd Bäcker

Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany

Abstract
Billiards are an important class of systems showing a large variety of dynamical behaviour ranging

from integrable (i.e. regular) motion, over mixed dynamics to strongly chaotic behaviour. Using

tools developed with Python one can interactively study the complexity of the dynamics. This

dynamical behaviour is directly reflected in properties of the corresponding quantum systems, like

eigenvalue statistics or the structure of eigenfunctions.

Chaotic behaviour in dynamical systems is a well-studied phenomenon. A particularly illustrative
class of systems are so-called billiard systems where a point particle moves freely along straight lines
inside a two-dimensional domain Ω with elastic reflections at the boundary. In such systems it is
therefore exclusively the boundary which determines the dynamical properties. This is illustrated
in Fig. 1 where 50 iterations of one initial point are shown for two billiards, parametrized in polar
coordinates by ρ(ϕ) = 1 + ε cos(ϕ) with ϕ ∈ [0, 2π], for parameters ε = 0 (circular billiard) and
ε = 1 (cardioid billiard) [1]. The circular billiard is an example of an integrable system showing
regular dynamics. The opposite extreme is the cardioid billiard which is fully chaotic In particular
this means that nearby trajectories separate exponentially as a function of time (hyperbolicity)
and that a typical trajectory will fill out the available space in a uniform way (ergodicity).

As the motion inside the billiard is on straight lines it is convenient to use the boundary to
define a Poincaré section,

P := {(s, p) | s ∈ [0, |∂Ω|], p ∈ [−1, 1]} . (1)

Figure 1: Regular dynamics in a billiard with circular shape vs. chaotic dynamics
in the cardioid billiard.



Comparing four simple  
dynamical maps:

Chaotic versus integrable maps: trajectories versus ensembles

(qt+1, pt+1) = F (qt , pt)

t!
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Perturbed cat Standard map Suris map Triangle map

Tomaž Prosen Non-equilibrium quantum and statistical physics group

Another feature of chaos:  
Difficulty of “phase-space” 
image compression 

(Separability Entropy [Prosen 2011])



Summary: defining features of classical Chaos

- Exponential sensitivity to initial conditions

- Equivalent: Dynamical production of entropy/information

- Forgetting memory of initial state

- Equivalent: Phase-space structures need finer and finer resolution 

    to be resolved to longer and longer times 

    (phase-space corse-graining needed for entropy growth and 2nd law) 




What about quantum chaos?

Are there universal physical features of quantized

chaotic systems?

Is there a meaningful definition of quantum chaos

in the absence of classical correspondence?



Tri glavne neklasične lastnosti kvantne mehanike:
koherentne superpozicije klasično različnih stanj - možnost interferenčnih
pojavov z delci
prepletenost (entanglement) sestavljenih stanj - možnost teleportacije
kvantno merjenje in kolaps valovne funkcije -
pri kvantnem merjenju, kvantno stanje povsem slučajno - z znano
verjetnostjo - preskoči v eno od dovoljenih klasičnih stanj

Tomaž Prosen Kvantna informacija

Kvantne superpozicije

Schrödingerjeva mačka: dve možni klasični stanji |zivai, |mrtvai.

Možno kvantno stanje: superpozicija

| i = |zivai+ |mrtvai

Tomaž Prosen Kvantna informacija

|Ψ⟩ = |dead⟩ + |alive⟩



Wave chaos
n = 100 n = 1000 n = 1500 n = 2000

Regular billiard

Chaotic billiard

Figure 4: The eigenstates of the integrable circular billiard and the chaotic cardioid
billiard reflect the structure of the corresponding classical dynamics.

For integrable systems the motion is restricted to invariant tori while for ergodic systems the
whole energy surface is filled in a uniform way. For the case of ergodic systems this statement is
actually proven by the quantum ergodicity theorem (see [13] for an introduction and references),
which states that almost all eigenfunctions become equidistributed in the semiclassical limit, e.g.
restricted to position space we have

lim
j→∞

Z

D

|ψnj(q)|2 d2q =
vol(D)

vol(Ω)
(9)

for a subsequence {ψnj} ⊂ {ψn} of density one. So for almost all eigenfunctions the probability
of finding a particle in a certain region D of the position space Ω in the semiclassical limit is just
the same as for the classical system.

Fig. 4 illustrates this for the case of the integrable circle billiard and the chaotic cardioid
billiard. One clearly sees that in the former case the probability is restricted to subregions of the
billiard, while for the ergodic case the probability density is uniformly distributed over the full
billiard region (apart from the inevitable fluctuations).

For systems with a mixed phase space the dynamics is more complicated, because both regular
motion and chaotic motion coexist, see Fig. 2. This is also reflected in the structure of the quantum
eigenstates, which are either located in the regular islands, or extend over the chaotic region, see
fig. 5

To conclude let us mention that in addition to the fundamental questions on the quantum
behaviour of systems with classically chaotic dynamics, such systems are also investigated experi-
mentally like for example microwave cavities, optical cavities (microlasers) and mesoscopic devices
(quantum dots).

From the numerical side, our experiences with using Python for research purposes is extremely
positive. When thinking of scientific computing typically Fortran or C/C++ come to ones mind
first for maximum performance. However many tasks involve fairly small amounts of time-critical
code, so that both development time and programm lengths are substantially reduced. On the
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from [Baecker 2007]
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Figure 5: Eigenstates in billiard with mixed phase either concentrate in the regular
islands (first two lines), or extend over the chaotic region (last line). This is most
clearly seen in the quantum Poincaré Husimi representation displayed in the last
column for each case.

other hand, due to the efficient usage of numerical libraries, no significant speed reduction arises
in our applications.

We would also like to point out that all the illustrations shown here involve Python. For
example for the two-dimensional graphics shown in Figs. 3 and 5 we have used PYX [14] (together
with PyXGraph to simplify plotting). For the three-dimensional visualization of eigenstates MayaVi
[15] is used with subsequent rendering.
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Systems in mixed regime: coexistence of regular and chaotic states

from [Baecker 2007]



Open Billiards 
Application to micro-lasers with directed emission

from [Noeckl: https://pages.uoregon.edu/noeckel/]



Quantum Scars  
- outlaws of quantum chaos -

from wikipedia



Energy level flow in Hydrogen atom in strong 
magnetic field: from order to chaos

34 

4.Some recent results 

Hydrogen atom in a stron 9 magnetic f ield 

An extremely interesting system, for i ts fundamental 'simplicity'and 
for i ts  astrophysical relevance as well, is the hydrogen atom in a strong 
uniform magnetic f ie ld (see, for instance, [Ga-85] and references therin). 
The conceptual importance of the problem follows from the fact that the 
two l imit ing cases of zero and inf in i te f ield strength, namely the Coulomb 
and the Landau (osci l lator l ike) problems respectively, which have very 
different symmetries, are the only three dimensional problems which are 
exactly soluble, as well classically than quantum mechanically. The motion 
of the electron submitted to the action of the Coulomb and Lorentz forces 
is governed, in the symmetrical gauge with vector potential A=(I/2)(rxB) 
(the magnetic f ie ld is in the z-direction), by the Hamiltonian (in a.u.) 

y2 
H= P--~2-1+~2Lz+2 r ~- (x2+y 2) (25) 

In (25) y is the reduced magnetic f ie ld  strength B/B c, Bc=2.35xlO5T. 
The two last  terms in (25) are the paramagnetic interaction associated 
with the normal Zeeman effect which is t r i v i a l  in the present context and 
which wi l l  be droped from now on, and the diamagnetic interaction. L z 
(and pari ty) are the only constants of the motion besides the energy. The 
importance of the diamagnetic effects are characterized by the ratio Of 
the diamagnetic to Coulomb energy, which is proportional to yn3~yIE1-3/2, 
where n is the principal quantum number and E is the energy. To magnify 
diamagnetic effects one can : i )  increase the magnetic f ie ld (values of 
y up to 10 -4 can be achieved under laboratory conditions) i i )  work with 
Rydberg atoms (one can achieve typical ly values of n= 50). 

The phase space structure of this system (diamagnetic Kepler problem) 
has been recently studied in detail by Delande and G~, [DG-86]. By increa- 
sing the value of Y/IEI 3/2, which is the significant parameter, one evol- 
ves from a motion which is fu l ly  regular, then a connected chaotic region 
appears and keeps increasing until i t  occupies the whole surface of energy, 
for a cr i t ical  value of the parameter. How is this behaviour reflected in 
the spectral fluctuations of the corresponding quantum system? One expects 
a transition from the Poisson to the GOE regime (as mentioned before, due 
to the particular spatial symmetry of the problem, although the system is 
not T-invariant one expects GOE-fluctuations). And this is indeed what is 
found by Delande and Gay when analyzing the computed spectrum. The results 
are i l lustrated in Figs. 13 and 14 . In Fig. 13 one can see the evolution 
of a stretch of the spectrum. The level repulsion or avoided crossings are 
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Fig.13 - Evolut ion of a segment of the spectrum as a funct ion 
square of the reduced magnetic f i e l d  strength y, in  the 

chaotic region (taken from [DG-861). 

c lea r l y  exh ib i ted.  And resul ts  for  the spacing d i s t r i bu t i on  and the 
spectral r i g i d i t y  are reproduced in  Fig,14 (s im i la r  resul ts  have been 

obtained by W~ntzen and Fr iedr ich [WF-86]). 
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Fig.14 - (a) spacing d i s t r i bu t i on  in  the regular region ; (b) spacing d is-  
t r i bu t i on  in  the f u l l y  chaotic region ; (c) spectral r i g i d i t y  A 3 in the 
f u l l y  chaotic region (taken from [DG-861). 

from [Delande and Gay, 1986]
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In summary, the Kepler diamagnetic problem offers a unique opportuni- 
ty for studying chaotic motion : i )  i t  is an in teres t ing  system from the 
point of view of symmetries (dynamical sj~nmetries), i i )  the classical as 
well as the quantum properties can be computed accurately ; i i i )  there is 
a t rans i t ion from regular to chaotic nmtion when the f ie ld  strength is 
increased ; iv)  i t  can be studied in the laboratory. For instance, the 
Bielefeld group [WHW-86] performs measurements with magnetic f i e ld  
strengths B -~ 6T and Rydberg atoms n -~ 40, which correspond already to the 
chaotic regime. 

B i l l i a rds  on a surface of constant negative curvature 

The in terest  on this problem in the context of chaotic systems comes 
from the fact that, for free motion, the t ra jector ies (geodesics)ihave local 
s t a b i l i t y  when the curvature of the space is posit ive and are unstable 
when the curvature is negative. In classical dynamical systems the geode- 
sic flow on surfaces of constant negative curvature is one of the oldest 
problems and best understood examples of chaotic motion. I t  has provided 
the basis for the development of the theory of Anosov systems and the 
proof of ergodic i ty of a gas with hard core interact ions. In spite of the 
chaotic nature of the problem, there exists in this case a direct  (and 
exact) connection between classical and quantum mechanics i f  the surface 
is compact (Selberg trace formula) : The trace of the propagator consists 
of a sum of terms characterizing the lengths of closed geodesics On the 
surface. One of the main issues is to see i f ,  computing closed orbi ts and 
via a Sel berg trace formula determine the quantum mechanical spectrum, 
constitutes in pr inciple a general method which can be applied in many 
other cases, chaotic as well as integrable (Gutzwi l ler,  see [Gu-841 for a 
recent review). 

An example of surface of constant negative curvature is the Poincar~ 
disk model of hyperbolic space : the open unit  disk in the complex plane, 
endowed with the metric ( in polar coordinates r ,  ~ ) 

ds 2 _ 4 [dr 2 + r 2 d~ 2] (26) 
(1-r2) 2 

(see Balazs and Voros [BV-86] for  a recent review on chaos on surfaces of 
negative curvature). In this model the geodesics are c i rcu lar  curves per- 
pendicular to the unit c i rc le  and diameters of the c i r c le .  The Laplace- 
Bel trami operator 

A -  1 ~ v'g gkj ~ (27) 

Jg @qk Bqj 
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Quantum Chaos Conjecture  
(Bohigas et al. 1984, Casati et al. 1980)
Energy spectra of quantum systems whose classical limit is chaotic can be statistically 
described by random Hamiltonians - unstructured random Hermitian matrices with i.i.d. 
entries. Heuristic proof: [Mueller et al. 2005] - for a mathematical proof we are still waiting..

The “reverse”: Berry-Tabor (1977) conjecture: Energy spectra of integrable systems are 
statistically described by a Poisson point process on a line

Universality in spectral statistics of quantum chaotic many body systems

Quantum Chaos Conjecture (Berry 1977, Casati, Guarneri, Vals-Griz 1980,
Bohigas, Giannoni, Schmit 1984):

Spectral correlations (and some other statistical properties of spectra and
eigenfunctions) of - even very simple - quantum systems, which are chaotic
in the classical limit, can be described by universal (no free parameter)
ensembles of Gausssian random matrices
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Is there a "quantum chaos conjecture" for many body quantum systems which
do not possess a classical limit?

Tomaž Prosen Non-equilibrium quantum and statistical physics group

More chaos, 
more ordered  

spectrum!



Chaos and double-slit experiment

Numerical experiment (Giulio Casati and T.P. Phys. Rev. A 72, 032111 (2005))
“Leaking of quantum particles/waves through two slits inside a regular or
chaotic billiard.
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Tomaž Prosen Non-equilibrium quantum and statistical physics group

Quantum Chaos and double-slit (numerical) experiment 
[Casati and TP, PRA 2005]



Many-Body Quantum Chaos
  (with or without(!) classical counterpart)

modern development: 

Examples: 

-quantum spin (qubit) chains

-models of black hole (SYK)




Chaotic quantum spin chains 
are perfect testbed examples 
for quantum computers

Google’s latest quantum chip (Willow)



Dual Unitary Quantum Circuits
Example of exactly solvable model of  

many-body quantum chaos

Before continuing, we note that the systems under
examination admit a convenient diagrammatic representa-
tion. One depicts operators as boxes with a number of
incoming and outgoing legs corresponding to the number
of local sites they act on. Each leg (or wire) carries a Hilbert
spaceH1. For instance, operators acting on a single site are
represented as a line with a bullet •, while the local gate and
its Hermitian conjugate are represented as

ð2Þ

We stress that, even if we use a symmetric symbol forU, we
assume no symmetry under reflection (left-to-right flip) and
time reversal (up-to-down flip).
This diagrammatic representation allows us to depict the

trace of the propagator for t steps as a partition function of a
certain vertex model:

ð3Þ

Here the transfer matrix U corresponds to two consecutive
rows, while the dual transfer matrix Ũ ∈ EndðH⊗2t

1 Þ
corresponds to two consecutive columns, and the
boundary conditions in both directions are periodic.
As it is clear from the diagram, the dual transfer matrix
reads as

Ũ ¼ T 2tŨ⊗tT†
2tŨ

⊗t; ð4Þ

where we introduced the dual local gate Ũ by means of the
following reshuffling:

hkj ⊗ hljŨjii ⊗ jji ¼ hjj ⊗ hljUjii ⊗ jki: ð5Þ

The dual gate defines the evolution in a circuit where the
roles of time and space have been swapped.
In this Letter we consider quantum circuits with unitary

local gates U such that Ũ is also unitary. Namely, we
require [23]

ð6Þ

ð7Þ

We call “dual unitary” local gates fulfilling both Eqs. (6)
and (7) (these conditions immediately imply that U and Ũ
are also unitary). In the following we show that dual-
unitary gates provide a remarkable testing ground for
studying dynamical correlations in many-body quantum
systems. They allow us to classify a number of qualitatively
different physical behaviors [29].
Here we consider dynamical correlation functions of

local operators in the general time-translation invariant,
tracial, or infinite temperature state. These quantities are
defined as follows:

Dαβðx; y; tÞ≡ 1

d2L
tr½aαxU−taβyUt%; ð8Þ

where x; y ∈ 1
2Z2L, t ∈ N [the space-time lattice of the

circuit is drawn in Eq. (3)] and faαxgd
2−1

α¼0 denotes a basis of
the space of local operators at site x, i.e., a basis of
EndðH1Þ. We assume that aα are Hilbert-Schmidt ortho-
normal tr½ðaαÞ†aβ% ¼ dδα;β and choose a0 ¼ 1, so all other
aα are traceless, i.e., tr½aα% ¼ 0 for α ≠ 0.
The expression (8) is represented diagrammatically as

ð9Þ

where, again, boundary conditions in both directions are
periodic. Since U−ta0xUt ¼ a0x, we have for all α ≠ 0,

D00ðx; y; tÞ ¼ 1;

D0αðx; y; tÞ ¼ Dα0ðx; y; tÞ ¼ 0: ð10Þ

Moreover, using the two-site shift invariance of U, we
find

PHYSICAL REVIEW LETTERS 123, 210601 (2019)
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⊗t; ð4Þ

where we introduced the dual local gate Ũ by means of the
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In this Letter we consider quantum circuits with unitary

local gates U such that Ũ is also unitary. Namely, we
require [23]

ð6Þ

ð7Þ

We call “dual unitary” local gates fulfilling both Eqs. (6)
and (7) (these conditions immediately imply that U and Ũ
are also unitary). In the following we show that dual-
unitary gates provide a remarkable testing ground for
studying dynamical correlations in many-body quantum
systems. They allow us to classify a number of qualitatively
different physical behaviors [29].
Here we consider dynamical correlation functions of

local operators in the general time-translation invariant,
tracial, or infinite temperature state. These quantities are
defined as follows:

Dαβðx; y; tÞ≡ 1

d2L
tr½aαxU−taβyUt%; ð8Þ

where x; y ∈ 1
2Z2L, t ∈ N [the space-time lattice of the

circuit is drawn in Eq. (3)] and faαxgd
2−1

α¼0 denotes a basis of
the space of local operators at site x, i.e., a basis of
EndðH1Þ. We assume that aα are Hilbert-Schmidt ortho-
normal tr½ðaαÞ†aβ% ¼ dδα;β and choose a0 ¼ 1, so all other
aα are traceless, i.e., tr½aα% ¼ 0 for α ≠ 0.
The expression (8) is represented diagrammatically as

ð9Þ

where, again, boundary conditions in both directions are
periodic. Since U−ta0xUt ¼ a0x, we have for all α ≠ 0,

D00ðx; y; tÞ ¼ 1;

D0αðx; y; tÞ ¼ Dα0ðx; y; tÞ ¼ 0: ð10Þ

Moreover, using the two-site shift invariance of U, we
find
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Before continuing, we note that the systems under
examination admit a convenient diagrammatic representa-
tion. One depicts operators as boxes with a number of
incoming and outgoing legs corresponding to the number
of local sites they act on. Each leg (or wire) carries a Hilbert
spaceH1. For instance, operators acting on a single site are
represented as a line with a bullet •, while the local gate and
its Hermitian conjugate are represented as

ð2Þ

We stress that, even if we use a symmetric symbol forU, we
assume no symmetry under reflection (left-to-right flip) and
time reversal (up-to-down flip).
This diagrammatic representation allows us to depict the

trace of the propagator for t steps as a partition function of a
certain vertex model:

ð3Þ

Here the transfer matrix U corresponds to two consecutive
rows, while the dual transfer matrix Ũ ∈ EndðH⊗2t

1 Þ
corresponds to two consecutive columns, and the
boundary conditions in both directions are periodic.
As it is clear from the diagram, the dual transfer matrix
reads as

Ũ ¼ T 2tŨ⊗tT†
2tŨ

⊗t; ð4Þ

where we introduced the dual local gate Ũ by means of the
following reshuffling:

hkj ⊗ hljŨjii ⊗ jji ¼ hjj ⊗ hljUjii ⊗ jki: ð5Þ

The dual gate defines the evolution in a circuit where the
roles of time and space have been swapped.
In this Letter we consider quantum circuits with unitary

local gates U such that Ũ is also unitary. Namely, we
require [23]

ð6Þ

ð7Þ

We call “dual unitary” local gates fulfilling both Eqs. (6)
and (7) (these conditions immediately imply that U and Ũ
are also unitary). In the following we show that dual-
unitary gates provide a remarkable testing ground for
studying dynamical correlations in many-body quantum
systems. They allow us to classify a number of qualitatively
different physical behaviors [29].
Here we consider dynamical correlation functions of

local operators in the general time-translation invariant,
tracial, or infinite temperature state. These quantities are
defined as follows:

Dαβðx; y; tÞ≡ 1

d2L
tr½aαxU−taβyUt%; ð8Þ

where x; y ∈ 1
2Z2L, t ∈ N [the space-time lattice of the

circuit is drawn in Eq. (3)] and faαxgd
2−1

α¼0 denotes a basis of
the space of local operators at site x, i.e., a basis of
EndðH1Þ. We assume that aα are Hilbert-Schmidt ortho-
normal tr½ðaαÞ†aβ% ¼ dδα;β and choose a0 ¼ 1, so all other
aα are traceless, i.e., tr½aα% ¼ 0 for α ≠ 0.
The expression (8) is represented diagrammatically as

ð9Þ

where, again, boundary conditions in both directions are
periodic. Since U−ta0xUt ¼ a0x, we have for all α ≠ 0,

D00ðx; y; tÞ ¼ 1;

D0αðx; y; tÞ ¼ Dα0ðx; y; tÞ ¼ 0: ð10Þ

Moreover, using the two-site shift invariance of U, we
find
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Dαβðx; y; tÞ ¼
!Cαβ

− ðx − y; tÞ 2y even

Cαβ
þ ðx − y; tÞ 2y odd;

ð11Þ

where we set Cαβ
% ðx;tÞ≡Dαβ(xþð1∓ 1Þ=4;ð1∓ 1Þ=4; t).

We are now in a position to derive the main result of
this Letter: an exact closed-form expression for Eq. (8).
The calculation can be subdivided into two main steps,
summarized in the following two properties.
Property 1.—If U is dual unitary, the dynamical

correlations for t ≤ L=2 are nonzero only on the edges
of a light cone spreading at speed 1:

Cαβ
ν ðx;tÞ¼ δx;νtC

αβ
ν ðνt; tÞ; ν¼%; α;β≠ 0: ð12Þ

Before proceeding with the rigorous proof we note
that Property 1 has a clear physical interpretation.
Because of the dual unitarity of the dynamics, cor-
relations have a causal cone in space, together with
that in time. Since they can only propagate along
the intersection of the two light cones, we must
have x ¼ %t.
Proof.—The most intuitive way to prove this property

is by using the diagrammatic representation (2) and (9).
Let us consider the case ν ¼ þ, while the procedure for
ν ¼ − is analogous.
By repeated use of the unitarity property (6) we can

simplify the circuit (9) out of the light cone spreading at
speed 1 from aβ0. This is a simple consequence of the
causal structure of the time evolution. Pictorially, we
have

ð13Þ

At this point, it is convenient to distinguish three cases:
(i) x ¼ t, (ii) x ¼ t − 1

2, and (iii) x ≠ t − 1
2 ; t. Let us start

by considering case (iii): using the unitarity of Ũ, i.e.,
Eq. (7), we have

ð14Þ

From this picture it is clear that (7) can be telescoped
until the operator aβ is encountered. Namely,

ð15Þ

where the central loop represents the trace of aβ fac-
toring out. Using that for β ≠ 0 the operators aβ are
traceless, we then conclude that the correlation vanishes.
Consider now case (ii). Using (7) we find

ð16Þ
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Here the loop giving tr½aα" factors out, so we again
conclude that the whole expression vanishes. We then
showed that the only remaining possibility is case (i). This
concludes the proof. ▪
Property 2.—The light cone correlations Cαβ

þ ðt; tÞ and
Cαβ
− ð−t; tÞ are given by

Cαβ
ν ðνt; tÞ ¼ 1

d
tr½M2t

ν ðaβÞaα"; ð17Þ

where we introduced the linear maps over EndðCdÞ:

ð18Þ

ð19Þ

tri½A" denote partial traces over the ith site (i ¼ 1, 2).
Proof.—We again prove the property for Cαβ

þ ðt; tÞ, using
the diagrammatic representation. A completely analogous
reasoning applies for Cαβ

− ð−t; tÞ.
By repeated use of the unitarity property (6), we can

reduce Cαβ
þ ðt; tÞ to the following form:

ð20Þ

Using the definition (18) we see that (20) is precisely the
diagrammatic representation of (17). ▪
Properties 1 and 2 have a very powerful consequence: all

dynamical correlations of local operators in dual-unitary
quantum circuits are determined by the two linear single-
qudit channels M'. These maps are trace preserving,
completely positive, and unital (meaning that they map the
identity operator to itself). Moreover, as it is apparent from
their definition, they are completely determined by a single

d2 × d2 unitary matrix (U in our case). Maps with these
properties are known in the literature as unistochastic maps
[31–33]. These maps are generically nondiagonalizable;
however, they are contractive. Namely, the eigenvalues
fλν;γgd

2−1
γ¼0 of Mν lie on the unit disk, and those that are on

the unit circle have coinciding algebraic and geometric
multiplicity [23]. This means that the dynamical correla-
tions take the following general form:

Cαβ
ν ðx; tÞ ¼ δνx;t

Xd2−1

γ¼1

cαβν;γðλν;γÞ2t; α; β ≠ 0; ð21Þ

where jλν;γj ≤ 1, and for eigenvalues corresponding to
nontrivial Jordan blocks, the “constant” cαβν;γ is a polynomial
in t. Note that since aβ are orthogonal, we excluded the
trivial eigenvalues λ';0 ¼ 1 corresponding to the identity
operator.
This gives a systematic way to classify dual-unitary

circuits based on the increasing level of ergodicity
of ultralocal observables.
(i) Noninteracting behavior: All 2ðd2 − 1Þ nontrivial

eigenvalues λν;γ are equal to 1, meaning that all dynamical
correlations remain constant.
(ii) Nonergodic (and generically interacting and non-

integrable) behavior: There are n, 1 ≤ n < 2ðd2 − 1Þ, non-
trivial eigenvalues λν;γ equal to 1, meaning that some
dynamical correlations remain constant.
(iii) Ergodic but nonmixing behavior: All nontrivial

eigenvalues λν;γ are different from 1, but there exists at
least one eigenvalue with unit modulus. In this case, all
time averaged dynamical correlations vanish at large
times, reproducing the infinite-temperature state value.
(iv) Ergodic and mixing behavior: All nontrivial eigen-

values are within unit disk, jλν;γj < 1. In this case, all time
dynamical correlations vanish at large times, reproducing
the infinite-temperature state value even without time
averaging.
An example of (i) is the SWAP gate Ujii ⊗ jji ¼

jji ⊗ jii, which is clearly self-dual, i.e., U ¼ Ũ. Note
that, since dual-unitary gates are generically not parity
invariant, we can have chiral cases where the number of
nondecaying modes (i.e., with λν;γ ¼ eiθ) propagating to
the left and to the right is different.
We point out that Eq. (21) gives direct access to time

correlations among extensive operators of the form
Aα
ν ≡

P
x∈ZL

aαxþðν−1Þ=4. Specifically, one finds

1

Ld2L
tr½Aα

νU−tAβ
μUt" ¼ δν;μ

Xd2−1

γ¼1

cαβν;γðλν;γÞ2t: ð22Þ

These correlations are able to distinguish dynamical mixing
from the mere decaying local correlators. Indeed, even if all
dynamical correlations (21) (at fixed distance x) vanish in
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figure from [Claeys and Lamacraft, 2021]

eigenvalues and n mutually commuting eigenoperators
ca ¼ weaaw†; a ¼ 1;…; n. The block-diagonal matrices
preserve the diagonal structure for the eigenvalues σab of
MðJÞ with a; b ≤ n, whereas w leads to a unitary trans-
formation of the quantum channel and its eigenoperators,
leaving the eigenvalues invariant [32].
It follows that Qa ¼

P
x∈2N caðxÞ are conserved quan-

tities, satisfying ½Qa;Uðt ¼ 2Þ% ¼ 0. Even stronger, these
behave as solitons that are simply shifted along the light
cone during dynamics (see Ref. [33]). The steady-state
correlations follow from the overlap of ρ with the con-
served charges. As shown in the Supplemental Material,
these are described by a GGE if the initial operator
represents a density matrix,

lim
t→∞

MtðρÞ ¼ exp
!Xn

a¼1

ðμa − μÞca þ μ1
"
¼ ρGGE; ð16Þ

where the μa and μ follow from ρ as

μa ¼ ln ðtrðρcaÞÞ; μ ¼ ln
#
1 −

Pn
b¼1 trðρcbÞ
q − n

$
: ð17Þ

The GGE state reproduces the initial values of all
conserved operators, trðρcaÞ ¼ trðρGGEcaÞ; a ¼ 1;…; n,
and trðρGGEÞ ¼ 1, and all correlations decay to the GGE
value limt→∞cρσðt; tÞ ¼ trðρGGEσÞ, ∀ σ. Since we focus on
correlations of one-site operators, ρGGE is a single-site
operator corresponding to the reduced density matrix for a
single site. However, this does not guarantee that the
reduced density matrix for larger subsystems also corre-
sponds to a GGE.
Additional unit eigenvalues can be obtained by intro-

ducing additional unit singular values. However, the addi-
tional conserved charges will no longer commute mutually
and the steady state can no longer be recast as a GGE. From
Eq. (13), a necessary condition for additional unit singular
values is for multiple rows of J to be equal. Taking the first
m < n rows of J to be equal leads to mðm − 1Þ additional
singular values λab ¼ 1; a; b ≤ m. For m ≤ n the block-
diagonal structure of Eq. (15) again leaves these singular
values invariant, and the total gate has additional unit-
eigenvalue eigenoperators and hence conserved charges
weabw†, a, b ≤ m. While the final value is no longer
described by a GGE, it still converges to a nonthermal value
set by the overlap of ρ with the (properly orthonormalized)
conserved charges. This can be seen as the limit of the
oscillatory behavior: taking rows of J to be equal up to a
nonzero constant, e.g., for fixed a, b ≤ n setting
Jaf ¼ Jbf þ ϕ; f ¼ 1;…; q, leads to a pair of complex
conjugate eigenvalues λab ¼ ðλbaÞ' ¼ eiϕ. The resulting
correlation functions do not decay but exhibit persistent
oscillations ∝ eiϕt, averaging out to zero for nonzero ϕ,
such that the time-average value corresponds to the GGE
value Eq. (16) in the absence of equal rows.

Noninteracting models.—Noninteracting models are
characterized by all eigenvalues equal to one. This
can be done by taking all rows of J to be equal, setting
all singular values equal to 1. In this case V½J%
corresponds to a swap gate and MðJÞ ¼ 1, such that
M½U% ¼ v†u† ⊗ vu. All eigenvalues have modulus one,
where all eigenvalue are exactly one if v ¼ u†. Dynamical
correlations remain constant and M½U% ¼ 1.
Ergodic and nonstationary models.— Ergodic but non-

stationary dynamics are characterized by 1 ≤ n ≤ q2 − 1
nontrivial eigenvalues that are all different from one but
with unit modulus. This can be done for generic J by
setting u ¼ wP; v ¼ w†, with w ∈ SUðqÞ and in which P is
defined as Pa;b ¼ eiθaδb;aþ1, identifying qþ 1≡ 1, and
θa; a ¼ 1;…; q are arbitrary phases. Considering the sub-
space of unit-eigenvalue (diagonal) eigenoperators of
M½V%, the effect of P is to set P†eaaP ¼ eaþ1;aþ1, such
that Mðw†eaawÞ ¼ w†eaþ1;aþ1w. Within this degenerate
subspace, M acts as a shift operator, with known eigen-
values given by e2πif=q; f ¼ 1;…; q, where the trivial
eigenvalue 1 corresponds to the identity. This leads to
q − 1 nontrivial eigenvalues given by the remaining roots
of unity. At sufficiently long times, all correlation functions
remain nonzero and oscillate around the zero ergodic value,
satisfying cρσðtþ q; tþ qÞ ¼ cρσðt; tÞ. This effectively
realizes a discrete time crystal, where the correlations in
a periodically driven system respond with a period that is an
integer multiple of the driving period [34–36].
Examples.—In Fig. 1, we present numerical examples for

different dynamics. Note that the quantum channel con-
struction does not require all unitaries to be identical [16],

FIG. 1. Correlation functions cρσðt; tÞ, where ρ, σ ∈ Cq×q are
randomly generated matrices with trðσÞ ¼ 0 leading to a thermal
value cρσðt; tÞ → 0. Local Hilbert space dimension q ¼ 6 and 4
different operators are considered. After an initial transient
regime, in the ergodic models the correlations either exponen-
tially decay to zero (stationary) or oscillate around zero (non-
stationary) with period q, whereas in the nonergodic models the
correlations decay to a nonzero value (stationary) with possible
oscillations around these nonzero values with a tunable period
(nonstationary).
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such that individual unitary gates can be randomly selected
while still keeping the overall level of ergodicity of the full
circuit. Level spacing statistics can also be calculated, a
common indicator of chaos and ergodicity, returning the
expected GUE statistics for ergodic mixing gates and
Poisson statistics otherwise, consistent with the proposed
classification [37,38].
As an additional example, we consider a dual-unitary

model for prethermalization with an arbitrarily large local
Hilbert space. For a nonergodic model, the system locally
thermalizes to a GGE consistent with the conserved
charges. Any perturbation generally destroys all nontrivial
conservation laws, inducing thermalization to the infinite-
temperature state. However, for small perturbations we
expect a separation of time scales: the correlations initially
prethermalize to the GGE values of the nonergodic model
before eventual thermalization to the infinite-temperature
thermal values [39,40].
Given general J, we can introduce an ergodicity-

inducing perturbation on top of a nonergodic model starting
from Eq. (11), setting

u¼ eiϵWuw
!1n 0

0 uq−n

"
; v¼

!1n 0

0 vq−n

"
w†e−iϵWv;

with again uq−n; vq−n ∈ SUðq − nÞ,w ∈ SUðqÞ, and where
the perturbation is generated by two (nonequal) Hermitian
operators Wu;v ∈ Cq×q and tuned through ϵ. At ϵ ¼ 0, this
reduces to a nonergodic model with n conservation laws,
whereas any finite ϵ results in an ergodic model. This is
illustrated in Fig. 2, where for small ϵ the dynamics of the

different circuits are indistinguishable, seemingly converg-
ing to the nonthermal steady-state value of the nonergodic
model. However, the effect of the perturbation becomes
apparent at longer times, where the models with nonzero ϵ
eventually thermalize to the infinite-temperature state
indicated by vanishing correlations. The time scale needed
to reach the eventual thermal state is determined by the
subleading eigenvalue of M and scales as ϵ−2, as it can be
verified from degenerate perturbation theory that the first-
order correction on the unit eigenvalues vanishes.
Conclusion.—It was shown how to generate classes of

dual-unitary gates with arbitrary local Hilbert space dimen-
sion and any desired level of ergodicity. Evolving a local
operator under a circuit composed of dual-unitary gates,
local correlation dynamics remain analytically tractable,
such that these models can be used to study both chaotic
and nonergodic dynamics in systems with an arbitrarily
large Hilbert space. Focusing on one-site operators,
stationary steady-state correlations were analytically shown
to be given by the infinite-temperature Gibbs state (ergodic)
or a generalized Gibbs ensemble (nonergodic). In both
cases, persistent correlations characterizing time crystals
can also be included on top of the steady-state value. The
proposed construction returns exactly solvable models of
thermalization, where we also illustrated prethermalization
to the latter before eventual thermalization to the former in
a nonergodic model with added ergodicity-inducing
perturbation.
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Experimental application of dual unitary circuits

[Chertkov et al., Nat. Phys. ’22]
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The mid-circuit measurement and reset operations that enable 
holographic algorithms are performed with high fidelity by tem-
porarily separating28,29 the targeted and spectator ions from one 
another by a distance that is large (≳180 μm) compared with the 1/e2 
radius of the resonant laser beam (between 13 and 20 μm depend-
ing on the zone) used for measurement and reset30. Crosstalk is 
further suppressed by temporarily moving the spectator ions off 
the radio-frequency null, which Doppler shifts the light from reso-
nance31, resulting in crosstalk errors on spectator qubits of ≲1 × 10−3 
for resets and ≲5 × 10−3 for measurements in the worst case (that is, 
for a spectator qubit in the worst-possible location), and nearly an 
order of magnitude lower than that on average.

We prepare an initial qMPS corresponding to equation (4) 
with W = exp[−i

∑

α=x,y,z

K

α

σ

α

⊗ σ

α]. Using the circuit identi-
ties shown in Fig. 1c, we can implement tensors N  (correspond-
ing to W) as a unitary circuit by creating a Bell pair of the physical 
qubits to appropriately reorder the qubit lines. We ran nine holo-
QUADS time-evolution circuits (one for each duration t = 0, 1,…, 8 
of time evolution), in each case executing 16 ‘slices’ of holoQUADS  
(Fig. 1), resulting in a simulation of a 32-site section of the 
half-infinite MPS. The resource requirements for these circuits, such 

as the number of two-qubit gates used, are summarized in Table 1. 
Each circuit was repeated 1,000 times to reconstruct the estimates of 
correlation function Cxx(r, t). The experimental results are summa-
rized in Fig. 3, and show excellent quantitative agreement with the 
exact theoretical results in the thermodynamic limit (Fig. 3c, lines), 
which were obtained by contracting tensor-network diagrams 
described elsewhere25 using the ITensor library32. We clearly observe 
that correlations propagate with the maximum velocity along a 
sharp light cone (Fig. 3a), which is the hallmark of dual-unitary 
circuit dynamics33; furthermore, correlations decay exponentially 
along the light cone, indicating the ergodic (non-integrable) char-
acter of the dynamics (Fig. 3e). Note that the data shown in Fig. 3 
are only a slightly processed form of the raw experimental data. The 
only form of error mitigation we apply is to detect the leakage of the 
bond qubit out of the qubit-state manifold at the end of the holo-
QUADS algorithm (Supplementary Information). The results are 
post-selected on experimental trials without bond-qubit leakage, 
which amounts to neglecting less than 3% of the total data (Table 1 
provides the leakage statistics).

Finally, we note that holoQUADS is not restricted to the  
simulation of dual-unitary models. Results from a holoQUADS  

Table 1 | Experimental resources

t!=!0 t!=!1 t!=!2 t!=!3 t!=!4 t!=!5 t!=!6 t!=!7 t!=!8

No. of qubits 3 5 5 7 7 9 9 11 11
No. of SQ gates 214 273 308 360 394 454 488 556 590
No. of TQ gates 66 87 104 129 146 175 192 225 242

% leaked 3.1 1.7 2.0 1.9 2.4 3.6 3.7 1.7 2.5

The required resources and detected leakage for the nine dual-unitary holoQUADS experiments. Each column corresponds to the simulated time evolution of a half-infinite MPS for time t. For each value of 
t, the associated circuit extracts correlation functions over 32!lattice sites, which involved 32!mid-circuit measurements and qubit resets, and each circuit was repeated 1,000!times to gather statistics. The 
first row lists how many qubits were used in each experiment. The second and third rows list how many single-qubit (SQ) and native two-qubit (TQ) gates were used, respectively. The last row indicates the 
percentage of the 1,000!experimental trials that were discarded due to the detected leakage of bond qubits (Supplementary Information).
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Fig. 3 | Experimental data. a, Colour plot of equal-time spin–spin correlators Cxx(r,!t) for the SDKI model with h!=!0.2 starting from a qMPS with the 
parameters (Kx,!Ky,!Kz)!=!(0.30,!0.50,!1.25) explored elsewhere25, showing theoretical results (left side, r!<!0) and experimental results (right, r!>!0). The 
correlators exhibit two characteristic features of generic dual-unitary circuit dynamics: correlations spread with the maximum velocity along the ‘light 
cones’ of the circuit and correlations decay exponentially along the light cones. Note that the data in this plot are aggregated into bins (r!∈!{2j,!2j!+!1} for 
j!>!0) containing symmetry-equivalent sites to smooth and reduce statistical fluctuations. b, The same correlator for a perturbed version of the SDKI model, 
which is not dual unitary. c,d, Traces of Cxx(r,!t), with data offset vertically by 0.1t for clarity, with dots showing the dual-unitary (c) and non-dual-unitary 
(d) experimental data. The error bars show the standard error due to finite sampling, and the coloured lines show the theoretical results. e, Log-linear plot 
of correlations along three different dual-unitary light-cone trajectories (the precise set of r and t values for each curve are indicated in the inset), with 
different offsets, k!=!0,!1,!2, from the centre of the light cone. Each dataset shows the characteristic exponential decay of correlations along the light cone.
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2.5 Spectral form factor of Floquet quantum circuits

For local quantum circuits the SFF (14) can be represented diagrammatically
as follows

K(t, L) = E

[

tr(UL)
ttr(U†

L)
t
]

= E

[ ]

, (21)

where we represented the trace in the forward time sheet (trUt
L) using the

diagram (10) and that in the backward time sheet (tr (U†
L)

t) by introducing

U † = , W † = , u†
x, w

†
x = . (22)

Once again shades of the same colour denote different matrices. Note that
top and bottom lines at the same positions within both sheets are connected
because of the traces.

Folding the backward sheet (blue) underneath the forward one (red) we
write the folded circuit representation of the SFF

K(t, L) = E

[ ]

, (23)

where we introduced “doubled” or thickened wires

= , (24)

≃ t

≃ t

[Bertini, Kos, TP, 2018, 2021]



Conclusions

Despite many decades of efforts, there is still no 
unified view of quantum and classical chaos.


Yet, there are clear and universal paradigms of 
chaos in both worlds, with a few exactly 
solvable models characterizing them.


