

Culinary Fluids Mechanics

Arnold Mathijssen, Maciej Lisicki, Vivek Prakash, Endre Mossige 13 June 2023

Flows are everywhere... but they are often hidden

Fluid mechanics is used in many industries

Why study "Culinary Fluid Mechanics"?

Creative (just like chefs) Accessible (affordable and observable)

Equitable (support minorities in STEM)

GG Fuller et al., "Kitchen flows: Making science more accessible, affordable, and curiosity driven", Phys. Fluids 34:11 (2022)

Agnes Pockels (1862 - 1935)

The legacy of Agnes Pockels

Modern Langmuir-Blodgett Trough, based on Pockels' sliding trough invention. Letter to Lord Rayleigh (1891):

"My Lord,

Will you kindly excuse my venturing to trouble you

... I thought I ought not to withhold from you these facts which I have observed, although I am not a professional physicist; and again begging you to excuse my boldness, I remain, with sincere respect,

Yours faithfully, Agnes Pockels"

Rayleigh helped to publish her work in the journal **Nature**

Selected publications...

- "Surface Tension", (1891) **Nature**, 46, 437.
- "On the relative contamination of the water-surface by equal quantities of different substances", (1892) Nature 47, 418.
- "Relations between the surface tension and relative contamination of water surfaces", (1893) Nature, 48, 152.
- "On the spreading of oil upon water", (1894) Nature 50, 223.
- "The measurement of surface tension with the balance" (1926) **Science** 64, 304.

So, she established the modern discipline known as surface science Overview of this Presentation (Menu of the Day)

Drinks

Starter

Main course

Dessert

Coffee

Vinkovci treasure of late Roman silver plate Vulic et al. (2017), J. Roman Archaeol. 30, 127

Ewoldt research group

Physics of bubbly drinks

a) Foam

- Creamy taste (yield stress rheometry)
- Temperature insulation (heat transfer)
- b) Bubble train
 - Size increases (supersaturated CO₂)
 - Velocity increases (drag hydrodynamics)
- c) Nucleation
 - Creation of bubbles (thermodynamics)
- d) Bubble implosion
 - Plume formation (multiphase flows)
- e) Foam stability
 - Drainage dynamics (interfacial flows)

Zenit et al., Physics Today 71 (11), 44–50 (2018)

Bubbles in space

What happens if an astronaut drinks sparkling water?

Hard to burp... extremely uncomfortable!!

Zenit et al., Physics Today 71 (11), 44–50 (2018)

Champagne effervescence

Normal glass

Treated glass

Beaumont et al. (2016) J. Food Eng. 188: 58

Evaporating cocktails – Rayleigh Taylor instability

Alcohol evaporates, heavier water remains, Top layer becomes unstable

Breakthrough experiment for Rayleigh-Taylor instabilities in miscible fluids

De Haeck et al. (2009) Phys. Fluids 21: 091108

Alcohol concentration (%)

Overview of this Presentation (Menu of the Day)

Drinks

Starter

Main course

Dessert

Coffee

• U

Self-propelled boats

Camphor boat

Lisa J Burton et al. (2013) Bioinspir. Biomim. 8 044003

 $\rightarrow U$

Swimming micro-droplets

Jin et al. (PNAS 114: 5089, 2017)

Overview of this Presentation (Menu of the Day)

Drinks

Starter

Main course

Dessert

Coffee

Spaghetti experiment

Experiment Time!

Bend the pasta – in how many pieces does it break?

Breaking spaghetti

Normal spaghetti

Heisser et al. (PNAS, 2018)

Cooking pasta

Prakash et al. (Chem Eng Sci, 2017)

Hwang et al. (Physics of Fluids, 2021)

Cooking pasta

24 min

I 80 °C Experimental

Al dente

I

80 °C Theoretical (Eqn. 6)

100 °C Experimental

100 °C Theoretical (Eqn. 6)

30 min

Hwang et al. (Physics of Fluids, 2021)

Morphing pasta into 3D shapes

Tao et al. (Science Advances, 2021)

Grilling with the Leidenfrost effect

10

4

100

Temperature of pan above T_S (°C)

1000

Bouillant et al. (Nature Physics, 2018), Kurz Instruments

More fun with the Leidenfrost effect

More fun with the Leidenfrost effect

Singla and Rivera (PRF 2019), Bouillant et al. (Nature Physics, 2018)

Overview of this Presentation (Menu of the Day)

Drinks

Starter

Main course

Dessert

Coffee

Baking a cake properly

Mixing at low Reynolds number

Overview of this Presentation (Menu of the Day)

Drinks

Starter

Main course

Dessert

Coffee

Coffee percolation

Xia & Thorpe, PRA (1988), Stauffer & Aharoni (1993), Ersi Ni (2015)

Latte art = inverted fountain

Increasing Froude number ightarrow

Increasing Reynolds number \rightarrow

Key variables:

- Velocity of pouring
- Height of milk jug
- Radius of the milk jet

Xue et al. (2019) Phys Rev Fluids 4: 024501

More coffee preparation methods

Metzger et al. (J Fluid Mech 2007)

Wadsworth et al. (Am J Phys 2021)

Xue et al. (Nat Commun, 2017)

Coffee ring effect

...and preventing it for coating materials

Add

Jafari Kang et al. (2016), Li et al. (2016), Ooi et al. (2017)

evaporation

Culinary Fluid Mechanics

Arnold Mathijssen, Maciej Lisicki, Vivek Prakash, Endre Mossige

In press, Reviews of Modern Physics (RMP) Preprint: arXiv 2201.12128

Image courtesy of Gerard Liger-Belair Image courtesy of Sam Dehaeck

CO	NT	EN	IT	S
				-

I. Introduction	2
II. Kitchen Sink Fundamentals	3
A. Eureka!	4
B. Navier-Stokes equations	4
C. Drinking from a straw: Hagen–Poiseuille	
flow	5
D. Onset of turbulence: Reynolds number	5
E. Bernoulli principle	5
F. Pendant drop: Surface tension	6
G. Wetting and capillary action	7
H. From jets to drops: Plateau-Rayleigh	
instability	7
I. Hydraulic jumps in the kitchen sink	8
J. How to cook a satellite dish	9
K. Washing and drying hands, skincare	9
III. Drinks & Cocktails: Multiphase Flows	10
A. Layered cocktails	10
1. Inverted Fountains	10
2. Internal Waves	11
3. Kelvin–Helmholtz Instability	11
4. Rayleigh-Taylor instability	12
B. Tears of wine	12
C. Whisky tasting	13
D. Marangoni cocktails	14
E. Bubbly drinks	15

E	Bubbly	drinks
Ľ.	Dubbly	unins

' amaths@upenn.edu

- mklis@fuw.edu.pl
- vprakash@miami.edu
- endre.mossige@gmail.com

	F. Foams	16
	G. Ouzo effect	18
V.	Soup Starter: Complex Fluids	19
	A. Food rheology	19
	1. Linear viscoelasticity	20
	2. Non-linear viscoelasticity	21
	B. Mixing up a sauce	23
	C. Suspensions	23
	D. Emulsions	24
	E. Cheerios effect: capillary floating	25
V.	Hot Main Course: Thermal Effects	25
	A. Feel the heat: energy transfer	25
	B. Levitating drops: Leidenfrost effect	26
	C. Heating and Boiling: Rayleigh-Bénard	
	convection	27
	D. Layered latte: double-diffusive convection	27
	E. Tenderloin: moisture migration	28
	F. Flames, vapors, fire and smoke	29
	G. Melting and freezing	29
	H. Non-stick coatings	30
VI.	Honey Dessert: Viscous Flows	30
	A. Flows at low Reynolds number	30
	B. Fundamental solution of Stokes flow	31
	C. Coffee grains in free fall	32
	D. Slender body theory	33
	E. Lubrication theory	33
	F. Pot stuck to stove top: Stefan adhesion	34
	G. Viscous gravity currents	34
	Making the perfect crêpe	34
	H. Viscous fingering	35
	I. Microbial fluid mechanics	35
	J. Microfluidics for improved food safety	35
	K. Ice creams	36

VII.	Coffee: Granular Matter & Porous Media	36
	A. Granular flows and avalanches	36
	B. Hoppers: grains flowing through an orifice	37
	C. Brazil nut effect	38
	D. Brewing coffee: porous media flows	38
	E. Coffee ring effect	40
VIII	Tempest in a Teacup: Non-linear Flows	
v 111.	Turbulence and Mixing	41
	A Tea leaf paradox	41
	B Secondary flows	12
	C. Turbulent jets emanating from tea kettles	42
	D. Sound generation by kitchen flows	42
	E. Making macarons: chaotic advection	14
	E. Sweetening tea with honey: mixing at low	
	Re and high Pe	45
		1000
IX.	Washing the dishes: Interfacial flows	45
	A. Greasy galleys smooth the waves	45
	B. Splashing and sloshing	46
	C. Dishwashing and soap film dynamics	46
	D. Ripples and waves	47
	E. Rinsing flows: thin film instabilities	48
	F. Dynamics of falling and rising drops	48
	1. Immiscible drops	48
	2. Miscible drops	49
Х.	Discussion	50
	A. Summary	50
	B. Learning from kitchen experiments	50
	C. Curiosity-driven research	52
	D. Conclusion	52
	Acknowledgements	52
	References	53

Thank you for your attention !!

amaths@upenn.edu

