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Motivation

I am a mathematician from the Center for Theoretical
Physics of PAS, and a coordinator of the grant SCREAM
(Symetry, Curvature Reductions, and EquivAlence
Methods) from the National Science Center of Poland, in
the GRIEG grant scheme, founded from the Norwegian
Financial Mechanism 2014-2021 (with project registration
number 2019/34/H/ST1/00636.)
Related to this grant, there is a conference GRIEG meets
Chopin being held now in Warsaw, and I tried to make a
concert for the conference participants. I had an idea of
employing a pianist, who has both Chopin and Grieg in
her repertoir to play the concert, but I failed.
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Motivation

Then I thought that in jazz, one can superpose several
compositions in one piece. Through my friends I got a
contact to a jazz pianist I admire, namely Leszek
Mozdzer, and to my surprise he agreed to give a concert
for our conference, provided that I will help him to built a
piano he always dreamed about. Actually he needed a
mathematical help for this built, and has chosen the first
mathematician who ever contacted him.
It turned out that the mathematics he needed, was not
demanding at all, but then I realised that an actual
implementation of the frequencies which Leszek needs in
his piano suffers from lack of solutions to a number of
physical and technological problems.
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Motivation

So I went to my Alma Mater, the Physics Department of
University of Warsaw, and asked for a PhD student who
is very talented in both experimental physics and piano
music.
It is how I encountered Aleksander Bogucki without
whom this project would never even had been started.
Aleksander introduced me to Andrzej Włodarczyk, a
world expert in the historic piano restoration - privately
Aleksander’s longterm piano tuner. Mr Włodarczyk joined
our team with enthusiasm. He revealed many of his
piano building secrets for us. This elevated our project to
the professional level. Again, without Andzrej Włodarczyk’s
contribution to the project, we would not be here today.
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Part I: MATHEMATICS
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What is sound?

Sound is a vibration of air preasure that we sense with
our ears1.
The rate at which these vibration heat our eardrums is
called the frequency of the sound. This is measured in
Hertzs, which is the number of vibrations per second.

1Non decaphonic part of this talk uses a lot from the youtube video of
Yuval Nov. One can consult his video at
https://www.youtube.com/watch?v=nK2jYk37Rlg&ab_channel=Formant
in case one is lost in this part
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https://www.youtube.com/watch?v=nK2jYk37Rlg&ab_channel=Formant


Frequency range

The frequency of musical tones is in the range of, say 50
Hertz, to few thousends Hertz.
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High frequency⇐⇒ high pitch

Our brain percives higher frequencies detected by our ears
as higher pitch

Link
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https://onlinetonegenerator.com/multiple-tone-generator.html?f[]=220&f[]=440&f[]=660&f[]=880&f[]=1760&w[]=si&w[]=si&w[]=si&w[]=si&w[]=si&v[]=50&v[]=50&v[]=50&v[]=50&v[]=50


Pure tones

All sounds are made, in a specific way, by building blocks,
namely by the pure tones.
We model a pure tone with sound frequency f , by a
function sinus, which changes with time t as sin(2πf t).
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Sines of pure tones with various frequencies

Relation between ω and f is ω = 2πf .
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Tones and overtones

When we force a musical instrument to play a pure
tone with frequency f , an (actual infinite) number of
other pure tones, with frequencies 2f , 3f , 4f , etc, called
overtones, is created.

Link
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https://zapytajfizyka.fuw.edu.pl/pliki/bogucki-nurowski/flute.mp4


Tones and overtones for a piano
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Tones and overtones for a piano
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Tones and overtones for a piano
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What is a melody?

For a melody, we need more than one tone.
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Two, or one melody?

Link

What makes these into melodies? Answer: the change in
pitch.
Are these melodies the same? Strictly speaking NO, since
none of the notes of the first melody is the same as a note
of the second melody.
But we strongly feel that these melodies are the same.
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https://zapytajfizyka.fuw.edu.pl/pliki/bogucki-nurowski/kurki3.mp4


What is a melody?

Different frequencies, but melodies are the same! Why?
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What is a melody?
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What is a melody?

19/154



What is a melody?

20/154



What is a melody?
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What is a melody?
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What is a melody?
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Same frequency⇔ same melody!

These are the ratios of neighbouring frequences which
are the same!
Conclusion:

the same melodies⇐⇒ same ratios between the keys
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Transposition

The act of changing of all the frequencies of a given melody by
the same factor - so that the ratios between the frequencies
stay the same - is called transposition.
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Transposition

The act of changing of all the frequencies of a given melody by
the same factor - so that the ratios between the frequencies
stay the same - is called transposition.
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Musical intervals

Between any two tones there is a musical interval
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Musical intervals

musical interval = musical distance between two tones
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Musical intervals

musical interval = musical distance between two tones
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Musical intervals

musical interval = musical distance between two tones
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Musical intervals

musical interval = musical distance between two tones
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Musical intervals

We now introduce two mportant intervals.
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The octave

The octave = musical interval with ratio 2:1
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The octave

The octave is very pleasent to the ear.
Two tones, an octave apart, played together sound very
harmonious
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The octave equivalence

They are highly similar; they are so similar that musicians
denote them by the same letter, and musicologists say
that they belong to the same pitch class.
They are considered to be musically equivalent.
We say about the octave equivalence.
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The fifth

Another important musical interval is given by the ratio
3:2.
It is called the fifth.
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The fifth

Another important musical interval is given by the ratio
3:2.
It is called the fifth. It is also very pleasent to the ear.
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Recall the harmonics

Due to the octave equivalence, the higher harmonics

2f ,3f ,4f ,5f ,6f ,7f ,8f ,9f ,10f ,11f ,12f ,13f , . . . ,

can be placed between f and 2f .
Since for melodies only the ratios between the tones are
important, so f , 2f , 4f , ..., 2k f are octave equivalent, as
well as 1

2 f , 1
4 f , ... 1

2k f , for every integer k .
For example the next musical interval betwen the
harmonics after f and 2f is f and 3f . But this, due to the
octave equivalence is the same, as an interval between f
and 3

2 f , which explains pleasance of the fifth. It is the
next harmonious musical interval to consider, after the
octave.
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The piano keyboard

We are in a position to chose pleasent sounds for the
piano keys.
The piano keyboard has 2 + 12× 7 + 2 = 88 keys.
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The piano keyboard

Look at the above above patern of twelve keys. In the
keyboard, the pattern is repeated seven times, an octave
apart from each other. This gives 12× 7 = 84 keys. To
these 84 keys, two additional keys are added on each of
the lateral ends of the keyboard.
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Choice of frequencies

Which tones are chosen for the twelve keys in an octave?

We start with an octave, say 440Hz – 880Hz.
We can restrict ourselves to chose frequencies in one
octave only, because frequencies for the keys in other
octaves will be obtained either
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Choice of frequencies

by multiplying all the frequencies by 2, or

44/154



Choice of frequencies

by dividing frequencies by 2.
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Choice of frequencies

For example, the next octave will have the frequency
range: 880Hz–1760Hz,
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Choice of frequencies

and the previous octave will have the frequency range:
220Hz–440Hz.
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Choice of frequencies

We will now make frequency choices for the keys in our
chosen octave 440Hz-880Hz.
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Choice of frequencies

Of course we want to play octaves, so we have to have
two frequencies octave apart in our frequency list.
We also want to play fifths, so the corresponding
frequency should also be in our list.
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Here is as it goes:
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Here is as it goes:
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Here is as it goes:
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Here is as it goes:
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Here is as it goes:

When does this stop?
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When does it stop?

Well... the best would be if we eventually arrived at 880Hz.
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When does it stop?
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When does it stop?
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When does it stop?
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It never stops!
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It never stops!
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A choice of finite number of notes in an octave

There are numerous choices of tuning systems!
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning
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Pythagorian tuning

Uff!...we assigned frequencies for the seven keys.
How do they sound?

95/154



Pythagorian tuning: sounds of the seven white keys

Link

Sounds familiar, ha?
It is enough to play a simple melody.
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https://zapytajfizyka.fuw.edu.pl/pliki/bogucki-nurowski/doremifasola.mp4


Pythagorian tuning: simple melody

Link
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https://zapytajfizyka.fuw.edu.pl/pliki/bogucki-nurowski/melodia.mp4


Pythagorian tuning: can we transpose?

There is however, a problem with a transposition: We
started our melody from the fifth, i.e. 3

2 key. If we started
from the next key, 27

16 , we would be missing one note, to
play the same melody :((.
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Pythagorian tuning: problems with transposition
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Pythagorian tuning: problems with transposition

We need to add only one key more, we again can play the
same melody, now starting at 27

16 .
Link
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https://zapytajfizyka.fuw.edu.pl/pliki/bogucki-nurowski/melodiatransponowana.mp4


Pythagorian tuning: creating the black keys
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Pythagorian tuning: creating the black keys
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Pythagorian tuning: creating the black keys
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Pythagorian tuning: creating the black keys

Uff...We have 12 keys! 7 whites, and 5 blacks!
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Pythagorian tuning: full keyboard

What we have now is pretty much as is the fundamental
pattern of the twelve keys of the piano keyboard.
The Pythagorian system, has more trouble issues than just
having troubles with transposition. The just intonation -yet
another tuning system - is introduced to cure one of them.
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Just intonation

One problem of the Pythagorian tuning is caused by the
beats.
Some important chords - the multiple harmoneous tones
played at once - sound better in just intonation.
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Just intonation: elimination of beats

In particular, instantenous play of the 1st, 3rd and 5th
note, in the white keys, is an important chord, called the
major chord.

Link

And the problem is with the 5th overtone of the first note,
and the 4th overtone of the 3rd note.
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http://harmonagon.com/


Just intonation: elimination of beats

It is as simple as:

4× 81
64
' 5.0625 ' 5× 1.

Because a superposition of two sinusoidal waves with so
close frequencies produces this:

Link
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https://onlinetonegenerator.com/multiple-tone-generator.html?f[]=2200&f[]=2227.5&w[]=si&w[]=si&v[]=50&v[]=50


Just intonation
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Just intonation
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Just intonation
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Just intonation
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Circle of fifths

Long time ago people observed that

(3
2
)12 ' 27.

This is the same as saying that

(3
2
)12

7 ' 2.

Well... (3
2
)12

7 − 2 ' 0.00387547.
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Circle of fifths

This means that starting in the pitch class C and heating
the successive key notes by the musical intervals of the
fifth, the thirteenth heated fifth will sound as C.
Well..., with a good aproximation.
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Circle of fifths

Link
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http://harmonagon.com/


Circle of fifths

This, in particular explains 88 = 2 + 12× 7 + 2 keys of the
piano!
twelve keys in each octaves, and seven octaves, to go
around in terms of the fifths to the same pitch class C.
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Returning to
( 3

2

)12 ' 27

For the pourpose of this lecture, I will call the modulus of

the difference |
(3

2

)12
7 − 2| = µ(3,12,7), a comma, of the

tuning system.
In the tuning systems we considered here, the comma
µ(3,12,7) = 0.00387547 is related to the three natural
numbers f , t , k which are:

f = 3, the third harmonic, which we used in the form of the
ratio 3

2 , to generate our piano keys steps;
t = 12, the number of keys in one octave of our tuning
system;
k = 7, the number of octaves needed to go from C back to
C, by jumping through the keys by the intervals of 3

2 .
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Designing a tuning system

Question: Can we have a Pythagorian tuning system with
t keys in every octave, which has k octaves and which is
generated from the first octave 1←→ 2 by a harmonic2 f ,
such that

its comma µ(f ,t,k) < 0.01,
the number of tones t × k < 100,
its generating harmonic f < 64?

I call this system Pythagorian, although it is based on f
rather than f = 3. But this is a straightforward
generalization.

2or a subharmonic 1/f
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Designing a tuning system

Theorem
The only values of (f , t , k) that answer the question in positive
are in the following table:
f t k µ

3
2 12 7 0.00387547

11
8 13 6 0.00631819

13
8 10 7 0.000871016

17
16 23 2 0.00808825

27
16 4 3 0.00905446

29
16 7 6 0.00135602
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Designing a tuning system

f t k µ

33
32 45 2 0.00156911
37
32 19 4 0.0070528
39
32 7 2 0.00151358
41
32 14 5 0.00158879
43
32 7 3 0.00744747
47
32 9 5 0.00241079
53
32 11 8 0.00123505
55
32 9 7 0.00639457
57
32 6 5 0.000737349
59
32 9 8 0.00971721
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Pythagorian system with 10 keys and 7 octaves

We see that among all Pythagorian systems, based on
f < 56, the system with f = 13, t = 10, k = 7 is the system
with the smallest comma.
It is precisely the system which Leszek Możdėr wanted us
to design for him. His motivation for using t = 10, k = 7 is
kind of ‘mystic’; totally unclear for us.
The Pythagorian decaphonic piano has six white keys
and four black keys.
Its octave with six white keys is generated by f = 13

8 ,
which plays the role of the ‘fifth’, when compared to the
t = 12, k = 7 Pythagorian system.
Since we have ten keys, and k = 7, to cover a passage
from C to C via the ‘fifths’ of 13

8 , the piano needs 70 keys,
only.
It should be stressed, that in our analysis we did not insist
on having t = 10 keys! The decimal/decaphonic system,
with seven octaves, was distinguished by pure
mathematics.122/154



Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning

126/154



Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning

130/154



Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Ten scale Pythagorian tuning
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Equal temperament

Consider all possible musical systems with t keys in an
octave.
As far as the problem of transposing melodies from one
key to another is concerned, the best among these
systems is the t-system in which all the adjascent keys
are apart the same interval.
Let this interval be given by a number r .
We start with our first key, in the first octave, which has
frequency value 1.
The second key has frequency value 1× r = r , , the third
key, r × r = r2, the fourth r2 × r = r3, and so on, until the
t th key, which will have frequency value r t−2 × r = r t−1.
Since the scale has t keys, the (t + 1)th key starts a new
octave, so that the value of this key is on one hand
r t−1 × r = r t , but on the other hand is 2.
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Equal temperament

We thus have r t = 2, or r is the t th root of r .
Thus, the musical intervals in such equally distanced scale
are equal to

r = (2)
1
t .

A musical scale with t equal intervals r = (2)
1
t is called

equally tempered, or equal temperament.
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Equal temperament for t = 12
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Equal temperament

The decaphonic piano of Leszek Mozdzer, which
physical implementation will be presented during the
concert at Nowa Miodowa Hall on Thursday, 13th July,
at 19:00, uses equally tempered 10 scale musical
system.
Mathematically the system has a remarkable property that
the differences in musical intervals between each of its
ten keys and the corresponding keys of the Pythagorian
f = 13, t = 10, k = 7 system, are about an order of
magnitude smaller, than the corresponding distances
differences between keys of the equally tempered 12
piano scale and the keys of its f = 3, t = 12, k = 7
Pytagorian counterpart.
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