Czy dwie fale o równej długości i będące w antyfazie, biegnące w przeciwnych kierunkach wygaszą się? Jeśli tak, to co się stanie z niesioną przez nie energią?
Czy dwie fale o równej długości i będące w antyfazie, biegnące w przeciwnych kierunkach wygaszą się? Jeśli tak, to co się stanie z niesioną przez nie energią?
Dwie fale o równej długości i będące w antyfazie, biegnące w przeciwnych kierunkach w wyniku interferencji się nie wygaszą, tylko utworzą falę stojącą. Można się o tym przekonać wykonując bezpośrednio rachunek np. dla fal na strunie. Dla fali poruszającej się w prawo wychylenie dane jest wzorem:
$$ y_1=A \cos[k(x-vt)].$$
Dla fali poruszającej się w lewo, która jest w antyfazie, mamy: $$ y_2=A \cos[k(x+vt)+π]=-A \cos[k(x+vt)]. $$
Widać, że obie funkcje oprócz znaku przed amplitudą różnią się także znakiem przed prędkością $v$, co wynika z tego, że poruszają się w przeciwne strony. Dlatego w wyniku interferencji fale się nie wygaszą tylko dostaniemy falę stojącą daną wzorem:
$$ y=y_1+y_2=2A\sin(kx)\sin(kvt).$$
W takim przypadku nie ma problemów z energią jest ona zachowana i zmagazynowana w drganiach struny. Wygaszenie fal nastąpiłoby, gdybyśmy rozpatrzyli dwie fale równej długości i będące w antyfazie, biegnące w tę samą stronę. W tej sytuacji energia również jest zachowana. Wynika to z tego, że jednocześnie próbujemy wychylić strunę w górę i w dół działając z siłami o jednakowej wartości i częstotliwości, więc siły się znoszą i struna pozostaje w spoczynku. Nie następuje żaden transfer energii do struny.
Oba powyższe przykłady, oraz wiele innych sytuacji, można zwizualizować za pomocą prostego programu do interferencji fal, którego opis znaleźć można tutaj, i który stanowi część ogólnodostępnego kursu podstaw fizyki.